Phase-resolved acoustic radiation force optical coherence elastography.

نویسندگان

  • Wenjuan Qi
  • Ruimin Chen
  • Lidek Chou
  • Gangjun Liu
  • Jun Zhang
  • Qifa Zhou
  • Zhongping Chen
چکیده

Many diseases involve changes in the biomechanical properties of tissue, and there is a close correlation between tissue elasticity and pathology. We report on the development of a phase-resolved acoustic radiation force optical coherence elastography method (ARF-OCE) to evaluate the elastic properties of tissue. This method utilizes chirped acoustic radiation force to produce excitation along the sample's axial direction, and it uses phase-resolved optical coherence tomography (OCT) to measure the vibration of the sample. Under 500-Hz square wave modulated ARF signal excitation, phase change maps of tissue mimicking phantoms are generated by the ARF-OCE method, and the resulting Young's modulus ratio is correlated with a standard compression test. The results verify that this technique could efficiently measure sample elastic properties accurately and quantitatively. Furthermore, a three-dimensional ARF-OCE image of the human atherosclerotic coronary artery is obtained. The result indicates that our dynamic phase-resolved ARF-OCE method can delineate tissues with different mechanical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer.

We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue...

متن کامل

Endoscopic Optical Coherence Elastography Using Acoustic Radiation Force and Bending Vibration of Optical Fiber

Optical coherence tomography (OCT) is an optical imaging technique that provides high-resolution cross-sectional image for clinical and biological field, and the OCT systems have a depth resolution of less than 10 m. Recently, measurement of hardness using endoscopic OCT is required . Fig. 1 Basic configuration of the endoscopic OCT-based elastography using the focusing transducer and bending v...

متن کامل

Biomechanical properties of soft tissue measurement using Optical Coherence Elastography

Optical Coherence Tomography (OCT) provides images at near histological resolution, which allows for the identification of micron sized morphological tissue structures. Optical coherence elastography (OCE) measures tissue displacement and utilizes the high resolution of OCT to generate high-resolution stiffness maps. In this work, we explored the potential of measuring shear wave propagation us...

متن کامل

Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography.

Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear...

متن کامل

3D mapping of elastic modulus using shear wave optical micro-elastography

Elastography provides a powerful tool for histopathological identification and clinical diagnosis based on information from tissue stiffness. Benefiting from high resolution, three-dimensional (3D), and noninvasive optical coherence tomography (OCT), optical micro-elastography has the ability to determine elastic properties with a resolution of ~10 μm in a 3D specimen. The shear wave velocity m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2012